博客
关于我
Leetcode 516. 最长回文子序列
阅读量:258 次
发布时间:2019-03-01

本文共 1279 字,大约阅读时间需要 4 分钟。

为了找到给定字符串 s 中的最长回文子序列,我们可以使用动态规划的方法。该方法通过建立一个二维数组 dp,其中 dp[i][j] 表示从索引 ij 的最长回文子序列的长度。

方法思路

  • 初始化:创建一个大小为 n x n 的二维数组 dp,其中 n 是字符串的长度。所有元素初始化为 0
  • 填充 dp 数组:遍历每个可能的子区间 [i, j]
    • 如果 s[i] 等于 s[j],则 dp[i][j] 等于 2 + dp[i+1][j-1]
    • 否则,dp[i][j] 等于 dp[i+1][j]dp[i][j-1] 中的最大值。
  • 结果dp[0][n-1] 即为最长回文子序列的长度。
  • 解决代码

    public class Solution {    public int longestPalindromeSubseq(String s) {        int n = s.length();        if (n == 0) return 0;                // Initialize dp table        int[][] dp = new int[n][n];        for (int i = 0; i < n; i++) {            dp[i][i] = 1;        }                for (int i = 0; i < n; i++) {            for (int j = i + 1; j < n; j++) {                if (s.charAt(i) == s.charAt(j)) {                    if (i + 1 == j - 1) {                        dp[i][j] = 2;                    } else {                        dp[i][j] = 2 + dp[i + 1][j - 1];                    }                } else {                    dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);                }            }        }                return dp[0][n - 1];    }}

    代码解释

  • 初始化dp 数组的对角线元素 dp[i][i] 初始化为 1,表示单个字符本身是一个长度为1的回文。
  • 填充 dp 数组
    • s[i] 等于 s[j] 时,回文的长度为 2 加上子区间 [i+1, j-1] 内的最长回文长度。
    • 否则,回文的长度取子区间 [i+1, j][i, j-1] 内的最大回文长度。
  • 结果:最长回文子序列的长度存储在 dp[0][n-1],即整个字符串的最长回文子序列长度。
  • 转载地址:http://giev.baihongyu.com/

    你可能感兴趣的文章
    NIO笔记---上
    查看>>
    NIO蔚来 面试——IP地址你了解多少?
    查看>>
    NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
    查看>>
    NISP国家信息安全水平考试,收藏这一篇就够了
    查看>>
    NIS服务器的配置过程
    查看>>
    Nitrux 3.8 发布!性能全面提升,带来非凡体验
    查看>>
    NiuShop开源商城系统 SQL注入漏洞复现
    查看>>
    NI笔试——大数加法
    查看>>
    NLog 自定义字段 写入 oracle
    查看>>
    NLog类库使用探索——详解配置
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP 模型中的偏差和公平性检测
    查看>>
    Vue3.0 性能提升主要是通过哪几方面体现的?
    查看>>
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP三大特征抽取器:CNN、RNN与Transformer全面解析
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP度量指标BELU真的完美么?
    查看>>
    NLP的不同研究领域和最新发展的概述
    查看>>
    NLP的神经网络训练的新模式
    查看>>